
Fondation in AI project
Werewolf vs Vampire game
Report of Alphagrid team

Philibert de Broglie
philibert.de-broglie@student-cs.fr

Gaël de Léséleuc de Kérouara
gael.de-leseleuc@student-cs.fr

Antonin Duval
antonin.duval@student-cs.fr

1 INTRODUCTION
This project presents the making of an Artificial Intelligence to play
the Vampire VS Werewolves game. This game opposes as its name
implies it werewolves top vampire, the winning side is the most
numerous one at the end. The teams starts with the same number
of members. In order to win the game, each team can turn humans
into their side or kill some opponents following some specific rules.
To be able to create a proper AI and not a random player nor a
reflex agent, a global strategy had to be established first, which
should take into account the opponents moves.

1.1 Some definitions
• a unit is define as member of a team: werewolf, vampire or
human

• an agent is a group of units which belong to our species
will be called an agent independently of its number of units

• a cell is where a group of unit is situated. A unit can only
move from one cell at a time.

1.2 Implementation overview
To play theWerewolf vs Vampire game, we implement the following
features :

• parallelization of the simulation : a multi-agent system
will organize all the computations

• expectimax algorithmwith alpha-beta pruningwhich allow
the simulation of complex moves (spliting and combination
of multiples units)

• dynamic heuristicwhich depend on the phase of the game

2 MULTI-AGENT SYSTEM
2.1 General overview
The multi-agent systems will :

(1) decompose the map in independent part and proceed each
part in parallel

(2) organize the communication between dependent agents by
simply organizing a turn by turn system

(3) find the best move of each possible agent by launching the
expectimax simulation

2.2 Cluster of independent agents
Independence. Two agents are independents if the distance be-

tween each other is greater than the depth max used in the game
simulation, meaning that inside the simulation the two groups of
units will not be able to directly interact. The idea is that when
two groups of units are separated by such a distance, rather than

simulating the combination of their moves at each step, their moves
can be simulated independently. Hence, the branching factor of the
simulations is greatly reduced.

Clustering. When receiving the updatemessage from the server,
the agents were clustered into independent group of agents, so that
two agents which belong to different clusters were viewed inde-
pendent. Hence, each cluster represent one unique region of the
game.

Thread generation. For each cluster of agent, a new thread is
launched; each thread having two seconds to return all best moves
of all agent belonging to the cluster.
At the end, all the moves return by each thread are concatenated.

2.3 Management of dependent agents
Combinations generation. The first idea was to consider a

group of dependent agents as a single entity. So at each step of the
simulation, all the possible combinations moves for an agent are
simulated. Problem was that the branching factor was so high that
it was not possible to manage more than two dependent agents.

Turn by turn system. To overcome these limitations, the sim-
ulation was simplified thanks to the implementation of a turn by
turn system. The idea is the following :

(1) considering a group of dependent agents, choose arbitrarily
one agent

(2) run a simulation for this agent and inside this simulation
"freeze" all the other agents (to not simulate the other agent
moves for now)

(3) select the best move for this particular agent
(4) update the grid by applying the selected bestmove and repeat

with another agent
The inconvenient of this approach is that it may not find the best
possible moves because it is dependent on the order of agent which
play first. However with this system, come a great advantage :
combination computation was suppressed, hence the branching
factor of each simulation was lower and thus the algorithm got
exponentially faster at explore the remaining possible choices.

Comparison of the two systems. So the question was, is it
better to :

• be able to manage fewer agents while being able to find the
optimal combination

• be able to manage a lots of agents but to generate moves that
are less optimal.

To solve this issue, both solutions were implemented and launched
against each other. It turned out that the "turn by turn system"
was winning against the "combination generation system". Mostly



Philibert de Broglie, Gaël de Léséleuc de Kérouara, and Antonin Duval

Figure 1

because it was able to handle a lot more group of units and thus
faster at killing human.

3 EXPECTIMAXWITH ALPHA/BETA
PRUNING

3.1 Generate move
To generate the list of moves one agent can do, a function gener-
ate_move() that take as parameters the grid, the position of the
unit to move, and the species of this unit, was created. There is a
two case scenario :

• Generating a move for the enemy.
• Generating a move for us.

Two scenarios had to be differentiated as the turn-by-turn sys-
tem for is only used for our units. Therefore, all combinations of
moves the enemy could do with his group of units had to be com-
puted. When simulating a move for our player, it was not needed
to compute the combination of moves of different agents. So let’s
explain how each scenario was handled :

Generating a move for us :

(1) Given the agent position, test every move and store it if it’s
a possible move (moves that are off grid and unauthorized
are deleted).

(2) Add all combinations for splitting in two the group of unit.
This mean only two group of the same size can be generated,
but this reduces the computation’s time tremendously.

Generating a move for the enemy :

(1) For each enemy positions, test if it’s in the vision field of this
agent(see 3.4), and if true, continue.

(2) test every move and store it if it’s a possible move (moves
that are off grid and unauthorized are deleted).

(3) Add all combinations for splitting in two the group of unit.
(4) Add all combinations of moves between all groups of enemy

that are in sight. This step can create a lot of possible combi-
nations. This is why it is only used for enemies that are in a
danger zone.

3.2 Sort move
Since lots of different moves are being simulated, it is important to
use a sorting system in order to simulate the best move first. This
gives two advantages :

• In case of multiples moves having the same heuristic, our
agent can be forced to choose a certain one.

• When time runs out during computation, the best moves
were simulated first.

The sorting system used is actually very simple : every move are
applied to the grid and their heuristics (cf 4.1) computed. Using this
metric, the moves can be sorted accordingly to the species that has
to be simulated.

3.3 Fight simulation (expectimax node)
When testing a move, the situation where to attack a group of unit
will come up, and it includes some random outcome in the simu-
lation, especially with the random battle scenarios. Every time a
move that generate a fight is tested, those moves are stored in a list.
If this concerns a deterministic fight (the outcome being always the
same), then the new grid is computed and the heuristic is returned.
If it’s a random fight scenario, the two outcomes (victory and defeat)
are stored with their according probability.



Fondation in AI project
Werewolf vs Vampire game
Report of Alphagrid team

In order to have the correct expected value for one move includ-
ing multiple fights, all combinations of possible results (For n fights,
there are 2n combinations) are computed.Vi and Di are . notes as
the state of victory or defeat for a fight i . If two fight happens at
one move, this will give : (V1 and D2) or (D1 and D2) or (D1 andV2)
etc...

Figure 2: Handling randomness in our simulation

Let’s denotem the move to simulate, S(m) the expected value
for movem, pi the probability of combination i ,S(i) the simulation
value for state i , and ∆ all the combinations computed. This gives
us the following :

S(m) =
∑
i ∈∆

pi ∗ S(i) (1)

This allows us to have a value for the heuristic that takes into
account the probability of each state after a fight.

3.4 Vision field
Since a lot of moves and many combinations our to be computed,
it can become quite large. it was decided that limiting the view of
the agents could be useful in that case. Indeed, one agent does not
need to see what the enemy does if it is out of his reach.

The notion of reach, express what is the furthest point where
an enemy can attack an agent. This is actually depth max. Indeed,
for a depth 3, the maximum distance our agent can move during
the simulation is 2 cells, and the enemy agent 1 cell. Therefore, the
vision of an agent can be limited to only depth max. If an enemy is
out of the vision field, as you can see in figure 1, his moves will not
be computed in the expectimax. Instead, more moves for an agent
could then be simulated.

3.5 Time control
There is a limit of 2 seconds for sending a new move, so the com-
putations has to end before time runs out, even if not all the nodes
were explored. To deal with this, all agents were given a time limit
to do their computation, equals to :

t(in seconds) =
2
N

− 0.01 (2)

where N is the number of agents. When the agent reach this time
limit, he must stop simulating new moves and return the best an-
swer found yet.

4 HEURISTIC
4.1 Four factors

General overview. Our heuristic is composed of four factors :
win-factor, split-factor, kill-factor, merge-factor. Such as our final
heuristic is :

H = α ·winf + β · splitf + γ · killf + δ ·merдef

Win factor. the win factor is simply to indicate which species
is currently winning.

winf = Nv − Nw

where Nv is the number of vampires and Nw is the number of
werewolf left on the grid.

Split factor. to compute the split factor, first was browsed the
position of each group of humans (h) and then was determine if this
group could be killed first by vampires (then it belong to ensemble
we call Hv ) or by werewolfs with probability one (in Hw ). It was
denoted d(h,v/w) the distance between the group of humans and
the closest group of vampire/werewolfs that can eat them with
probability 1. With this notation, the split factor was computed as :

splitf =
∑
h∈Hv

Nh
dist(h,v)

−
∑

h∈Hw

Nh
dist(h,w)

Concretely, this mean it is preferable to have a lot of possibility to
kill humans and also to be close to humans that can be killed. This
was call the split factor as this heuristic enhance the split when
multiple group of humans are in opposite directions.

Merge factor. As some point during the game, gathering our
units may be a strategic move.Hence, a merge factor was brought
up and defined as:

merдef = −

∑
vi ,vj ∈V d(vi ,vj )

nb of vampire group
+

∑
wi ,w j ∈W d(wi ,w j )

nb of werewolf group

Kill factor. Finally, the last idea was to include the fact that it
is better to be close to enemies which can be killed and far away
from enemies that can kill us.

killf =
∑

v ∈V ,w ∈W

nv − nw
dist(v,w)

4.2 Dynamic
Then, these factors were dynamically weighted depending on the
game phase.

α - win factor. Concerning the win factor, the α weight was
maintained constant over the entire game

β - kill factor. β was set equal to 1
number of humans so that at first

when there is an important number of humans on the map, our unit
focuses on killing humans rather than on killing enemies, fewer
humans are left, the more aggressive the agent get.



Philibert de Broglie, Gaël de Léséleuc de Kérouara, and Antonin Duval

γ - merge factor. γ was set equal to 1
number of human groups so that

our agents don’t merge when there are many groups of human; but
when there is no more, they try to merge as soon as possible. Once
there is no more humans on the map and that the agents forms
only one single group of units, γ is set to zero.

δ - split factor. δ , was simply set to zero when no more humans
were on the map.

5 LIMITATIONS
5.1 Results
Even though we manage to create an algorithm that can play the
game fairly well on themapwe’ve created, it was very disappointing
for us, to see our AI act so poorly the day of the final challenge.
Our algorithm crashed multiple times, unexpectedly. This is mainly
due to the fact that not all possible scenarios were considered and
that the code was not flexible enough to handle every kind of map.

The major bug which was faced was that there were no maximum
nor minimum value for alpha and beta large enough, thus the
algorithm ended up with scenarios where all moves were pruned
without selecting any, resulting in an empty list of moves.

However, when the code finally worked, probably thanks tomaps
it could handle better, it was a relief to observe that our algorithm
could won games against all the other AIs.

5.2 Limitation of the minimax
One of the downside of using minimax is that it suppose the enemy
will behave the same way as we do. However, as observe during the
competition, this is often not the case. For example, our heuristic
was made in a way that killing humans is a priority. Getting closer
to an enemy is not a problem as it is thought that the enemy will
not attack us and also prefer eating humans. When facing an AI
that is more aggressive, we might end up loosing because of how
we expected him to act.


	1 INTRODUCTION
	1.1 Some definitions
	1.2 Implementation overview

	2 MULTI-AGENT SYSTEM
	2.1 General overview
	2.2 Cluster of independent agents
	2.3 Management of dependent agents

	3 EXPECTIMAX WITH ALPHA/BETA PRUNING
	3.1 Generate move
	3.2 Sort move
	3.3 Fight simulation (expectimax node)
	3.4 Vision field
	3.5 Time control

	4 Heuristic
	4.1 Four factors
	4.2 Dynamic

	5 LIMITATIONS
	5.1 Results
	5.2 Limitation of the minimax


